
SuperLUSuperLU: Sparse Direct Solver: Sparse Direct Solver

X. Sherry Li
xsli@lbl.gov

http://crd.lbl.gov/~xiaoye

DOE ACTS Collection Workshop
August 24, 2004

X. Li 2

OutlineOutline

�Overview of the software
�Some background of the algorithms

� Highlight the differences between sequential and parallel solvers

�Sparse matrix distribution and user interface
�Example program, Fortran 90 interface
�Dissection of two applications

� Quantum mechanics (linear system)
[M. Baertschy, C. W. McCurdy, T. N. Rescigno, W. A. Isaacs, Li]

� Accelerator design (eigenvalue problem)
[P. Husbands, C. Yang, Li]

X. Li 3

What is What is SuperLUSuperLU

�Solve general sparse linear system A x = b.
� Example: A of dimension 105, only 10 ~ 100 nonzeros per row

�Algorithm: Gaussian elimination (LU factorization: A = LU),
followed by lower/upper triangular solutions.
� Store only nonzeros and perform operations only on nonzeros.

�Efficient and portable implementation for high-performance
architectures; flexible interface.

X. Li 4

Software StatusSoftware Status

�Friendly interface for Fortran users
�SuperLU_MT similar to SuperLU both numerically and in usage

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthread
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

X. Li 5

Adoptions of Adoptions of SuperLUSuperLU

� Industrial
� Mathematica
� FEMLAB
� Python
� HP Mathematical Library
� NAG

�Academic/Lab:
� In other ACTS Tools: PETSc, Hyper
� NIMROD (simulate fusion reactor plasmas)
� Omega3P (accelerator design, SLAC)
� OpenSees (earthquake simluation, UCB)
� DSpice (parallel circuit simulation, SNL)
� Trilinos (object-oriented framework encompassing various solvers, SNL)
� NIKE (finite element code for structural mechanics, LLNL)

X. Li 6

Content of Content of SuperLUSuperLU LibraryLibrary

�LAPACK-style interface
� Simple and expert driver routines
� Computational routines
� Comprehensive testing routines and example programs

�Functionalities
� Minimum degree ordering [MMD, Liu `85] applied to ATA or AT+A
� User-controllable pivoting

� Pre-assigned row and/or column permutations
� Partial pivoting with threshold

� Solving transposed system
� Equilibration
� Condition number estimation
� Iterative refinement
� Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

X. Li 7

FillFill--in in Sparse GEin in Sparse GE

�Original zero entry Aij becomes nonzero in L or U.

Natural order: nonzeros = 233 Min. Degree order: nonzeros = 207

X. Li 8

SupernodeSupernode

�Exploit dense submatrices in the L & U factors

�Why are they good?
� Permit use of Level 3 BLAS
� Reduce inefficient indirect addressing (scatter/gather)
� Reduce graph algorithms time by traversing a coarser graph

X. Li 9

Overview of the AlgorithmsOverview of the Algorithms

� Sparse LU factorization: Pr A Pc
T = L U

� Choose permutations Pr and Pc for numerical stability, minimizing fill-in,
and maximizing parallelism.

� Phases for sparse direct solvers
1. Order equations & variables to minimize fill-in.

� NP-hard, so use heuristics based on combinatorics.
2. Symbolic factorization.

� Identify supernodes, set up data structures and allocate memory for L & U.
3. Numerical factorization – usually dominates total time.

� How to pivot?
4. Triangular solutions – usually less than 5% total time.

� Parallelization of Steps 1 and 2 are in progress.

X. Li 10

Numerical PivotingNumerical Pivoting

� Goal of pivoting is to control element growth in L & U for stability
� For sparse factorizations, often relax the pivoting rule to trade with better sparsity and

parallelism (e.g., threshold pivoting, static pivoting , . . .)

� Partial pivoting used in sequential SuperLU (GEPP)
� Can force diagonal pivoting (controlled by diagonal threshold)
� Hard to implement scalably for sparse factorization

� Static pivoting used in SuperLU_DIST (GESP)
� Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’
� During factor A’ = LU, replace tiny pivots by , without changing data structures

for L & U
� If needed, use a few steps of iterative refinement after the first solution
� Quite stable in practice

Aε

X. Li 11

Ordering for Sparse Ordering for Sparse CholeskyCholesky (symmetric)(symmetric)

�Local greedy: Minimum degree (upper bound on fill-in)
[Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/Duff `94,

Ashcraft `95, Duff/Reid `95, et al.]

i j k i j k

Eliminate 1

1

i

j

k




























×

×

×

×××× 1

i

j

k




























•••×

•••×

•••×

××××

1

i

j

k

Eliminate 1
i

k

j

X. Li 12

Ordering for Sparse Ordering for Sparse CholeskyCholesky (symmetric)(symmetric)

�Global graph partitioning approach: top-down, divide-and-conqure
�Nested dissection [George ’73, Lipton/Rose/Tarjan ’79]

� First level

� Recurse on A and B

�Goal: find the smallest possible separator S at each level
� Multilevel schemes [Hendrickson/Leland `94, Karypis/Kumar `95]
� Spectral bisection [Simon et al. `90-`95]
� Geometric and spectral bisection [Chan/Gilbert/Teng `94]

A BS
















Sxx
xB
xA

0
0

X. Li 13

Ordering Based on Graph PartitioningOrdering Based on Graph Partitioning

X. Li 14

Ordering for LU (Ordering for LU (unsymmetricunsymmetric))

� Can use a symmetric ordering on a symmetrized matrix . . .
� Case of partial pivoting (sequential SuperLU):

Use ordering based on ATA
� If RTR = ATA and PA = LU, then for any row permutation P,

struct(L+U) ⊆ struct(RT+R) [George/Ng `87]
� Making R sparse tends to make L & U sparse . . .

� Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A
� If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
� Making R sparse tends to make L & U sparse . . .

� Can find better ordering based solely on A, without symmetrization
[Amestoy/Li/Ng `03]

X. Li 15

Ordering Interface in Ordering Interface in SuperLUSuperLU

�Library contains the following routines:
� Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
� Utilities: form AT+A , ATA

�Users may input any other permutation vector (e.g., using Metis,
Chaco, etc.)

. . .
set_default_options_dist (&options);
options.ColPerm = MY_PERMC; /* modify default option */
ScalePermstructInit (m, n, &ScalePermstruct);
METIS (. . . , &ScalePermstruct.perm_c);
. . .
pdgssvx (&options, . . . , &ScalePermstruct, . . .);
. . .

X. Li 16

Ordering ComparisonOrdering Comparison

9.110.735.327.726068WANG4

8.011.98.822.6120750TWOTONE

0.0020.155.54.417758MEMPLUS

68.442.7120.473.551993ECL32

34.040.244.649.838744BBMAT

N Flops (109)Flops (109) Fill (106)Fill (106)Matrix

GESP, AMD(AT+A)
(SuperLU_DIST)

GEPP, COLAMD
(SuperLU)

X. Li 17

Symbolic FactorizationSymbolic Factorization

�Cholesky [George/Liu `81 book]
� Use elimination graph of L and its transitive reduction (elimination tree)
� Complexity linear in output: O(nnz(L))

�LU
� Use elimination graphs of L & U and their transitive reductions (elimination

DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
� Improved by symmetric structure pruning [Eisenstat/Liu `92]
� Improved by supernodes
� Complexity greater than nnz(L+U), but much smaller than flops(LU)

X. Li 18

Numerical FactorizationNumerical Factorization

�Sequential SuperLU
� Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the

supernodes

�SuperLU_MT
� Exploit both coarse and fine grain parallelism
� Employ dynamic scheduling to minimize parallel runtime

�SuperLU_DIST
� Enhance scalability by static pivoting and 2D matrix distribution

X. Li 19

How to distribute the matrices?How to distribute the matrices?

� Matrices involved:
� A, B (turned into X) – input, users manipulate them
� L, U – output, users do not need to see them

� A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

� Natural for users, and consistent with other popular packages: PETSc,
Aztec, etc.

A B
x x x x

x x x

x x x

x x x

P0

P1

P2

X. Li 20

Distributed Input InterfaceDistributed Input Interface

�Each process has a structure to store local part of A
(Distributed Compressed Row Format):

typedef struct {
int_t nnz_loc; /* number of nonzeros in the local submatrix */
int_t m_loc; /* number of rows local to this processor */
int_t fst_row; /* global index of the first row */
void *nzval; /* pointer to array of nonzero values, packed by row */
int_t *colind; /* pointer to array of column indices of the nonzeros */
int_t *rowptr; /* pointer to array of beginning of rows in nzval[]and colind[] */

} NRformat_loc;

X. Li 21

2D Block Cyclic Layout for L and U2D Block Cyclic Layout for L and U

� Better for GE scalability, load balance
� Library has a “re-distribution” phase to distribute the initial values of A to the

2D block-cyclic data structure of L & U.
� All-to-all communication, entirely parallel
� < 10% of total time for most matrices

X. Li 22

Process grid and MPI communicatorProcess grid and MPI communicator

�Example: Solving a preconditioned linear system
M-1A x = M-1 b
M = diag(A11, A22, A33)

� use SuperLU_DIST for
each diag. block

�Need create 3 process grids, same logical ranks (0:3),
but different physical ranks

�Each grid has its own MPI communicator

A22

A33

A110 1
2 3

4 5
6 7

8 9
1011

X. Li 23

Two ways to create a process gridTwo ways to create a process grid

�Superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol,
gridinfo_t *grid);

� Maps the first nprow*npcol processes in the MPI communicator Bcomm to
SuperLU 2D grid

�Superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int ldumap, gridinfo_t *grid);

� Maps an arbitrary set of nprow*npcol processes in the MPI communicator
Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are
given in usermap[] array. For example:

161514
131211

0 1 2
0

1

X. Li 24

ScalabilityScalability

� 3D KxKxK cubic grids, scale N2 = K6 with P for constant work per processor
� Achieved 12.5 and 21.2 Gflops on 128 processors
� Performance sensitive to communication latency

� Cray T3E latency: 3 microseconds (~ 2702 flops)
� IBM SP latency: 8 microseconds (~ 11940 flops)

X. Li 25

Tips for Debugging PerformanceTips for Debugging Performance

�Check ordering
�Diagonal pivoting is preferable

� E.g., matrix is diagonally dominant, or SPD, . . .

�Need good BLAS library (vendor BLAS, ATLAS)
� May need adjust block size for each architecture

(Parameters modifiable in routine sp_ienv())
� Larger blocks better for uniprocessor
� Smaller blocks better for parallellism and load balance

� Open problem: automatic tuning for block size?

X. Li 26

SuperLU_DISTSuperLU_DIST Example ProgramExample Program

� SuperLU_DIST_2.0/EXAMPLE/pddrive.c

� Five basic steps
1. Initialize the MPI environment and SuperLU process grid
2. Set up the input matrices A and B
3. Set the options argument (can modify the default)
4. Call SuperLU routine PDGSSVX
5. Release the process grid, deallocate memory, and terminate the MPI

environment

X. Li 27

Pddrive.cPddrive.c

#include "superlu_ddefs.h“

main(int argc, char *argv[])
{

superlu_options_t options;
SuperLUStat_t stat;
SuperMatrix A;
ScalePermstruct_t ScalePermstruct;
LUstruct_t LUstruct;
SOLVEstruct_t SOLVEstruct;
gridinfo_t grid;

· · · · · ·
/* Initialize MPI environment */

MPI_Init(&argc, &argv);

· · · · · ·
/* Initialize the SuperLU process grid */

nprow = npcol = 2;
superlu_gridinit(MPI_COMM_WORLD, nprow,

npcol, &grid);

/* Read matrix A from file, distribute it, and set up the
right-hand side */

dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx,
fp, &grid);

/* Set the options for the solver. Defaults are:
options.Fact = DOFACT;
options.Equil = YES;
options.ColPerm = MMD_AT_PLUS_A;
options.RowPerm = LargeDiag;
options.ReplaceTinyPivot = YES;
options.Trans = NOTRANS;
options.IterRefine = DOUBLE;
options.SolveInitialized = NO;
options.RefineInitialized = NO;
options.PrintStat = YES;

*/
set_default_options_dist(&options);

X. Li 28

Pddrive.cPddrive.c (cont.)(cont.)

/* Initialize ScalePermstruct and LUstruct. */
ScalePermstructInit (m, n, &ScalePermstruct);
LUstructInit (m, n, &LUstruct);

/* Initialize the statistics variables. */
PStatInit(&stat);

/* Call the linear equation solver. */
pdgssvx (&options, &A, &ScalePermstruct, b,

ldb, nrhs, &grid, &LUstruct,
&SOLVEstruct, berr, &stat, &info);

/* Print the statistics. */

PStatPrint (&options, &stat, &grid);

/* Deallocate storage */

PStatFree (&stat);
Destroy_LU (n, &grid, &LUstruct);
LUstructFree (&LUstruct);

/* Release the SuperLU process grid */
superlu_gridexit (&grid);

/* Terminate the MPI execution environment
*/
MPI_Finalize ();

}

X. Li 29

Fortran 90 InterfaceFortran 90 Interface

�SuperLU_DIST_2.0/FORTRAN/
�All SuperLU objects (e.g., LU structure) are opaque for F90

� They are allocated, deallocated and operated in the C side and not directly
accessible from Fortran side.

�C objects are accessed via handles that exist in Fortran’s user
space

� In Fortran, all handles are of type INTEGER

�Example:

0.12,0.18,0.5,0.16,0.21,0.19 where, ======























= lrepus

rll
ue

pl
ul

uus

A

X. Li 30

SuperLU_DIST_2.0/FORTRAN/f_5x5.f90SuperLU_DIST_2.0/FORTRAN/f_5x5.f90

program f_5x5
use superlu_mod
include 'mpif.h'
implicit none
integer maxn, maxnz, maxnrhs
parameter (maxn = 10, maxnz = 100, maxnrhs
= 10)
integer colind(maxnz), rowptr(maxn+1)
real*8 nzval(maxnz), b(maxn), berr(maxnrhs)
integer n, m, nnz, nrhs, ldb, i, ierr, info, iam
integer nprow, npcol
integer init
integer nnz_loc, m_loc, fst_row
real*8 s, u, p, e, r, l

integer(superlu_ptr) :: grid
integer(superlu_ptr) :: options
integer(superlu_ptr) :: ScalePermstruct
integer(superlu_ptr) :: LUstruct
integer(superlu_ptr) :: SOLVEstruct
integer(superlu_ptr) :: A
integer(superlu_ptr) :: stat

! Initialize MPI environment
call mpi_init(ierr)

! Create Fortran handles for the C structures used
! in SuperLU_DIST
call f_create_gridinfo(grid)
call f_create_options(options)
call f_create_ScalePermstruct(ScalePermstruct)
call f_create_LUstruct(LUstruct)
call f_create_SOLVEstruct(SOLVEstruct)
call f_create_SuperMatrix(A)
call f_create_SuperLUStat(stat)

! Initialize the SuperLU_DIST process grid
nprow = 1
npcol = 2
call f_superlu_gridinit

(MPI_COMM_WORLD,
nprow, npcol, grid)

call get_GridInfo(grid, iam=iam)

X. Li 31

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Set up the input matrix A
! It is set up to use 2 processors:
! processor 1 contains the first 2 rows
! processor 2 contains the last 3 rows

m = 5
n = 5
nnz = 12
s = 19.0
u = 21.0
p = 16.0
e = 5.0
r = 18.0
l = 12.0

if (iam == 0) then
nnz_loc = 5
m_loc = 2
fst_row = 0 ! 0-based indexing
nzval (1) = s
colind (1) = 0 ! 0-based indexing
nzval (2) = u
colind (2) = 2
nzval (3) = u
colind (3) = 3
nzval (4) = l
colind (4) = 0
nzval (5) = u
colind (5) = 1
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 3
rowptr (3) = 5

else
nnz_loc = 7
m_loc = 3
fst_row = 2 ! 0-based indexing
nzval (1) = l
colind (1) = 1
nzval (2) = p
colind (2) = 2
nzval (3) = e
colind (3) = 3
nzval (4) = u
colind (4) = 4
nzval (5) = l
colind (5) = 0
nzval (6) = l
colind (6) = 1
nzval (7) = r
colind (7) = 4
rowptr (1) = 0 ! 0-based indexing
rowptr (2) = 2
rowptr (3) = 4
rowptr (4) = 7

endif

X. Li 32

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Create the distributed compressed row matrix
! pointed to by the F90 handle
call f_dCreate_CompRowLoc_Matrix_dist

(A, m, n, nnz_loc, m_loc, fst_row, &
nzval, colind, rowptr, SLU_NR_loc, &
SLU_D, SLU_GE)

! Setup the right hand side
nrhs = 1
call get_CompRowLoc_Matrix

(A, nrow_loc=ldb)
do i = 1, ldb

b(i) = 1.0
enddo

! Set the default input options
call f_set_default_options(options)

! Modify one or more options
Call set_superlu_options

(options,ColPerm=NATURAL)
call set_superlu_options

(options,RowPerm=NOROWPERM)

! Initialize ScalePermstruct and LUstruct
call get_SuperMatrix (A,nrow=m,ncol=n)
call f_ScalePermstructInit(m, n, ScalePermstruct)
call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables
call f_PStatInit(stat)

! Call the linear equation solver
call f_pdgssvx(options, A, ScalePermstruct, b,

ldb, nrhs, grid, LUstruct, SOLVEstruct,
berr, stat, info)

! Deallocate the storage allocated by SuperLU_DIST
call f_PStatFree(stat)
call f_Destroy_SuperMatrix_Store_dist(A)
call f_ScalePermstructFree(ScalePermstruct)
call f_Destroy_LU(n, grid, LUstruct)
call f_LUstructFree(LUstruct)

X. Li 33

f_5x5.f90 (cont.)f_5x5.f90 (cont.)

! Release the SuperLU process grid
call f_superlu_gridexit(grid)

! Deallocate the C structures pointed to by the
! Fortran handles
call f_destroy_gridinfo(grid)
call f_destroy_options(options)
call f_destroy_ScalePermstruct(ScalePermstruct)
call f_destroy_LUstruct(LUstruct)
call f_destroy_SOLVEstruct(SOLVEstruct)
call f_destroy_SuperMatrix(A)
call f_destroy_SuperLUStat(stat)

! Terminate the MPI execution environment
call mpi_finalize(ierr)

Stop
end

X. Li 34

Other Examples in EXAMPLE/Other Examples in EXAMPLE/

�Pddrive1.c:
Solve the systems with same A but different right-hand side.
� Reuse the factored form of A

�Pddrive2.c:
Solve the systems with the same sparsity pattern of A.
� Reuse the sparsity ordering

�Pddrive3.c:
Solve the systems with the same sparsity pattern and similar values
� Reuse the sparsity ordering and symbolic factorization

�Pddrive4.c:
Divide the processes into two subgroups (two grids) such that each
subgroup solves a linear system independently from the other.

X. Li 35

Application 1: Quantum MechanicsApplication 1: Quantum Mechanics

�Scattering in a quantum system of three charged particles

�Simplest example is ionization of a hydrogen atom by
collision with an electron:

e- + H � H+ + 2e-

�Seek the particles’ wave functions represented by the
time-independent Schrodinger equation

�First solution to this long-standing unsolved problem
[Recigno, McCurdy, et al. Science, 24 Dec 1999]

X. Li 36

Quantum Mechanics (cont.)Quantum Mechanics (cont.)

�Finite difference leads to complex, unsymmetric systems,
very ill-conditioned
� Diagonal blocks have the structure of 2D finite difference

Laplacian matrices
Very sparse: nonzeros per row <= 13

� Off-diagonal block is a diagonal matrix
� Between 6 to 24 blocks, each of order

between 200K and 350K
� Total dimension up to 8.4 M

�Too much fill if use direct method . . .

X. Li 37

SuperLU_DISTSuperLU_DIST as as PreconditionerPreconditioner

�SuperLU_DIST as block-diagonal preconditioner for CGS
iteration

M-1A x = M-1b
M = diag(A11, A22, A33, …)

�Run multiple SuperLU_DIST simultaneously for diagonal blocks
�No pivoting, nor iterative refinement

�12 to 35 CGS iterations @ 1 ~ 2 minute/iteration using 64 IBM SP
processors
�Total time: 0.5 to a few hours

X. Li 38

One Block Timings on IBM SPOne Block Timings on IBM SP

�Complex, unsymmetric

�N = 2 M, NNZ = 26 M
�Fill-ins using Metis: 1.3 G

(50x fill)
�Factorization speed

� 10x speedup (4 to 128 P)
� Up to 30 Gflops

X. Li 39

Application 2: Accelerator Cavity DesignApplication 2: Accelerator Cavity Design

�Calculate cavity mode frequencies and field vectors
�Solve Maxwell equation in electromagnetic field
�Omega3P simulation code developed at SLAC

Omega3P model of a 47-cell section of the 206-cell
Next Linear Collider accelerator structure

Individual cells used in
accelerating structure

X. Li 40

Accelerator (cont.)Accelerator (cont.)

�Finite element methods lead to
large sparse generalized
eigensystem K x = λλλλ M x

�Real symmetric for lossless
cavities; Complex symmetric
when lossy in cavities

�Seek interior eigenvalues
(tightly clustered) that are
relatively small in magnitude

X. Li 41

Accelerator (cont.)Accelerator (cont.)

�Speed up Lanczos convergence by shift-invert
� Seek largest eigenvalues, well separated, of the transformed
system

M (K - σ M)-1 x = µ M x
µ = 1 / (λ - σ)

�The Filtering algorithm [Y. Sun]
� Inexact shift-invert Lanczos + JOCC (Jacobi Orthogonal Component

Correction)

�We added exact shift-invert Lanczos (ESIL)
� PARPACK for Lanczos
� SuperLU_DIST for shifted linear system
� No pivoting, nor iterative refinement

X. Li 42

DDS47, Linear ElementsDDS47, Linear Elements

�Total eigensolver time: N = 1.3 M, NNZ = 20 M

X. Li 43

Largest Largest EigenEigen Problem Solved So FarProblem Solved So Far

�DDS47, quadratic elements
� N = 7.5 M, NNZ = 304 M
� 6 G fill-ins using Metis

�24 processors (8x3)
� Factor: 3,347 s
� 1 Solve: 61 s
� Eigensolver: 9,259 s (~2.5 hrs)

� 10 eigenvalues, 1 shift, 55 solves

X. Li 44

SummarySummary

�Efficient implementations of sparse LU on high-performance
machines

�More sensitive to latency than dense case
�Continuing developments funded by TOPS and NPACI programs

� Integrate into more applications
� Improve triangular solution
� Parallel ordering and symbolic factorization

�Survey of other sparse direct solvers: “Eigentemplates” book
(www.netlib.org/etemplates)
� LLT, LDLT, LU

